Neues KI-Modell erkennt Antibiotikaresistenzen zuverlässig
27.11.2025 - Forscher der Universitätsmedizin Oldenburg haben ein KI-Modell entwickelt, das zuverlässiger als andere Methoden antibiotikaresistente Bakterien identifizieren kann, weil es deutlich weniger falsch-positive Ergebnisse produziert.
Zuverlässiger als bisher Bakterien identifizieren, die gegen Reserveantibiotika resistent sind – das kann das neue KI-Modell „CarbaDetector“. Entwickelt haben es Forscher der Universitätsmedizin Oldenburg unter der Leitung von Prof. Dr. Axel Hamprecht, Direktor des Universitätsinstituts für Medizinische Mikrobiologie und Virologie am Klinikum Oldenburg. Anders als bei Testverfahren, die gegenwärtig in Laboren zum Einsatz kommen, liefert die neue Anwendung deutlich seltener falsch-positive Treffer. Wie die Forscher zeigten, übertrifft die KI anerkannte Screeningalgorithmen.
„Gängige Screeningmethoden verursachen häufig falsch-positive Ergebnisse, die zu weiteren Untersuchungen führen, die Zeit und Geld kosten, obwohl sie eigentlich überflüssig sind“, erklärt Dr. Linea Katharina Muhsal, die Erstautorin der Studie.
Konkret geht es bei der KI aus Oldenburg darum, Bakterien zuverlässig zu erkennen, die Carbapenemasen produzieren. Diese Enzyme zerstören Carbapenem-Reserveantibiotika, also solche Antibiotika, mit denen Ärzte nur in Ausnahmefällen behandeln. Sie kommen nur dann zum Einsatz, wenn Bakterien Resistenzen gegen reguläre Antibiotika entwickelt haben. Der zurückhaltende Umgang mit diesen Wirkstoffen soll weitere Resistenzen vermeiden. Die Carbapenemase-produzierenden Enterobacterales (CPE), die der „CarbaDetector“ enttarnen kann, können verschiedene Krankheiten wie Harnwegsinfektionen, Sepsis oder Lungenentzündungen auslösen. Weil sie häufig nicht nur gegen viele reguläre Antibiotika, sondern auch gegen Reserveantibiotika resistent sind, ist ihre Bekämpfung schwierig. Von gut einer halben Millionen Menschen, die nach Angaben der Weltgesundheitsorganisation jährlich infolge von Antibiotikaresistenzen sterben, leiden gut 30.000 Personen an Krankheiten, die von CPE verursacht wurden.
„CarbaDetector“ analysiert – ähnlich wie andere Screeningmethoden –, wie die untersuchte Probe im Labor auf verschiedene Antibiotika reagiert. Entscheidend ist dabei der Durchmesser der Kreise, die entstehen, wenn Labormitarbeitende runde Plättchen mit Antibiotika auf die Bakterienkultur geben. Die Hemmzonen entstehen, weil das jeweilige Antibiotikum das Wachstum der Bakterien in diesem Bereich unterdrückt. Verschiedene Gremien, darunter das Europäische Komitee für die Prüfung der Antibiotikaempfindlichkeit (EUCAST), haben Algorithmen entwickelt, mit denen sich anhand dieser Durchmesser errechnen lässt, ob es sich bei dem getesteten Bakterium um ein CPE handelt. Mit diesen Berechnungen werden positive Proben fast immer erkannt – sie klassifizieren allerdings häufig negative Proben fälschlicherweise als positiv.
Weniger falsch-positive Ergebnisse
Um die Funktionalität ihres KI-Modells zu testen, haben die Forschenden um Muhsal und Hamprecht dessen Ergebnisse mit zwei anerkannten Algorithmen verglichen, die aktuell in der Praxis bei Resistenzbestimmungen zum Einsatz kommen. Sie analysierten zwei Datensätze mit insgesamt 800 Bakterienstämmen mit ihrer KI, dem EUCAST-Algorithmus und einem ebenfalls anerkannten Algorithmus der Französischen Gesellschaft für Mikrobiologie.
Das Ergebnis: Positive Proben erkannte die KI in etwa genauso gut wie die anerkannten Algorithmen. Dabei produzierte sie aber deutlich weniger falsch-positive Ergebnisse. Nur in rund 13 % der Fälle markierte sie eine negative Probe fälschlicherweise als positiv. Die etablierten Algorithmen verursachten – je nach Datensatz und Algorithmus – zwischen 27,8 und 61 % falsch-positive Ergebnisse.
„CarbaDetector“ ist in Deutschland ausschließlich für den Einsatz im Rahmen der Forschung zugelassen. „Wir wollen das Modell noch weiterentwickeln und weiterhin kostenlos zur Verfügung stellen, sodass es von Laboren mit weniger Ressourcen in anderen Ländern genutzt werden kann“, so Hamprecht.