Labor & Diagnostik

Dopamin nachweisen

22.10.2025 - Kohlenstoff kann in Form dünner Röhren je nach deren Durchmesser in unterschiedlichen Farben fluoreszieren. Forscher der Ruhr-Universität Bochum nutzen diesen Effekt aus, indem sie Kohlenstoff-Nanoröhren als Sensoren für verschiedene biomedizinische Anwendungen einsetzen, etwa im Bereich der personalisierten Medizin bei Parkinson-Erkrankungen.

Prof. Dr. Sebastian Kruss, Leiter der Arbeitsgruppe Biophotonik und funktionale Materialien an der Ruhr-Universität Bochum, informiert über diese Forschungsarbeiten im Wissenschaftsmagazin Rubin der Ruhr-Universität.

Liegt Kohlenstoff in Form von dünnen Röhren vor, leuchtet er – je nach Durchmesser der Röhre – in verschiedenen Farben. Diesen Umstand machen sich Bochumer Forschende zu Nutze. Sie verwenden Kohlenstoff-Nanoröhren als Sensoren und experimentieren mit ihnen für verschiedene biomedizinische Anwendungen, zum Beispiel im Rahmen der personalisierten Medizin für Parkinson-Patienten. Über die Arbeiten berichtet Prof. Dr. Sebastian Kruss, Leiter der Arbeitsgruppe Biophotonik und funktionale Materialien der Ruhr-Universität Bochum, im Wissenschaftsmagazin Rubin der Ruhr-Universität.

Die eingesetzten Nanoröhren bestehen aus einem wabenförmigen Kohlenstoff-Geflecht und sind 100.000-mal dünner als ein menschliches Haar. Scheint sichtbares Licht auf sie, fluoreszieren sie. Das heißt, sie senden Licht einer anderen Wellenlänge aus, als eingestrahlt wurde, und zwar im Nahinfrarot-Bereich. Die Bochumer Gruppe zeigte unter anderem, dass sich mit dieser Technik der Botenstoff Dopamin nachweisen lässt, der eine wichtige Rolle bei der Parkinson-Erkrankung spielt.

Bindung verändert Leuchten

Trifft ein Dopamin-Molekül auf eine passend modifizierte Nanoröhre, dockt das Dopamin an der Oberfläche des Röhrchens an, was deren Leuchten im Nahinfrarot-Bereich verändert; es leuchtet heller. Diesen Unterschied können die Bochumer Biochemikerinnen und Biochemiker mit eigens dafür gebauten Mikroskopen erfassen. Zusammen mit Kooperationspartnern aus Duisburg, gelang es Sebastian Kruss’ Gruppe die Konzentration von Dopamin mithilfe der Kohlenstoff-Nanoröhren als Sensor zu messen. Und das nicht nur in einer standardisierten Pufferlösung, sondern auch die direkte Freisetzung aus Zellen unter Bedingungen wie im menschlichen Körper. „Letzteres ist viel komplizierter, weil zum Beispiel Blut alle möglichen Bestandteile enthält, die die Messung stören können“, verdeutlicht Kruss.

Präzise Messungen für die personalisierte Medizin

Anwendungen der Methode sind für die personalisierte Medizin denkbar. Menschen mit Parkinson-Krankheit erhalten zur Behandlung häufig L-Dopa, eine Vorstufe des Dopamins. „Die L-Dopa-Menge muss sich in einem bestimmten therapeutischen Fenster bewegen“, erläutert Sebastian Kruss. Eine zu geringe oder zu hohe Menge wirkt sich negativ auf die Symptome aus. „Eine bestimmte Dosis kann für einen Patienten optimal sein, für eine andere Patientin aber nicht“, führt der Biochemiker weiter aus. An einem solchen Test, der ähnlich wie eine Blutzucker-Messung funktionieren könnte, arbeiten die Bochumer Forschenden gemeinsam mit Partnern des Fraunhofer Instituts für mikroelektronische Schaltungen und Systeme in Duisburg

Kontakt

Ruhr-Universität Bochum

Universitätstr. 150
44801 Bochum
Deutschland

+49 234 32 23 201
+49 234 32 14 14201

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier

Folgen Sie der
Management & Krankenhaus

 

 

MICROSITE Gesundheits-technologie

Lesen Sie hier

MICROSITE Digitale Identität

Lesen Sie hier

MICROSITE Smart Soft Locker Solutions

Lesen Sie hier