Neuer Hemmstoff gegen hartnäckige bakterielle Biofilme

HIPS-Forscher haben ein neues kleines Molekül entwickelt, das die Bildung gefährlicher Biofilme unterdrückt.

  • Bakterien der Art Pseudomonas aeruginosa sind äußerst widerstandfähig und kommen fast überall vor. Foto: HZI/Manfred RohdeBakterien der Art Pseudomonas aeruginosa sind äußerst widerstandfähig und kommen fast überall vor. Foto: HZI/Manfred Rohde

Besonders für Krankenhauspatienten mit geschwächtem Immunsystem ist der Erreger Pseudomonas aeruginosa eine ernst zu nehmende Gefahr.

Bakterien dieser Art können alle Organe des Körpers infizieren und so z.B. wiederkehrende Lungenentzündungen, Sepsis oder chronische Wundinfektionen verursachen. Durch ihre vielfältigen Resistenzen gegen Antibiotika sind die Bakterien oft nur schwer behandelbar. Dazu kommt, dass Pseudomonaden in der Lage sind, sich einen eigenen, schützenden Lebensraum zu schaffen: Sie lagern sich zu dichten Kolonien –Biofilmen – zusammen, die sie gegen Abwehrreaktionen des Immunsystems und gegen Antibiotika abschirmen. Daher suchen Wissenschaftler nach möglichen Angriffszielen in den Prozessen der Biofilmbildung, um Pseudomonaden zu bekämpfen.

Künstliches Molekül blockiert Protein

Eine Schlüsselrolle bei der Ausbildung von Biofilmen spielen Lektine. Diese Proteine werden von den Bakterien freigesetzt und binden außerhalb der Bakterienzellen an Zuckermoleküle. So vernetzen sie die Zuckermoleküle zu einer Matrix und helfen den Pseudomonaden, sich am Gewebe des infizierten Wirtes anzuheften und dort eine dichte Kolonie auszubilden. „Wenn es gelingt, die Zuckerbindestelle der Lektine zu blockieren, kann Pseudomonas keinen Biofilm mehr bilden und wird für Medikamente empfänglich“, sagt Dr. Alexander Titz, der in Saarbrücken die Nachwuchsgruppe „Medizinische Chemie von Naturstoffen“ des Deutschen Zentrums für Infektionsforschung leitet. Ausgehend vom Zuckermolekül Mannose, das eines der natürlichen Bindungspartner des Lektins LecB ist, haben die Wissenschaftler um Titz über fünf Jahre hinweg ein künstliches Molekül entwickelt, das hochspezifisch an LecB bindet und das Protein so blockiert.

„Wir haben uns die dreidimensionale Molekülstruktur des Komplexes von LecB mit Mannose angeschaut und darauf basierend ein kleines Molekül entworfen, das ähnliche Bindeeigenschaften aufweisen sollte“, sagt Titz. „Die Struktur dieses Moleküls haben wir Schritt für Schritt anhand von Laborergebnissen optimiert, sodass es nun ausreichend lange an LecB binden kann und auch gegenüber abbauenden Enzymen des Körpers stabil ist.“ Der entscheidende Vorteil des neuen Moleküls ist seine geringe Größe: „Bisher waren Lektinhemmstoffe große Moleküle mit sehr hohem Gewicht, die entgegen der erwünschten Wirkung die Biofilme sogar teilweise stabilisiert haben, weil sie die Funktion der Zuckermoleküle übernommen haben“, sagt Titz.

„Wir haben dagegen in Zellkulturexperimenten eindeutig nachgewiesen, dass kleine Moleküle dies nicht können. Sie hindern die Pseudomonaden tatsächlich daran, einen Biofilm zu bilden.“

Zudem haben die Wissenschaftler vergleichende Versuche zur Darreichungsform des neuen Moleküls an Mäusen durchgeführt. Dazu haben sie den Wirkstoff einer Gruppe von Mäusen intravenös und einer anderen oral verabreicht. Untersuchungen des Blutes und des Urins nach 24 Std. haben gezeigt, dass der Wirkstoff auch bei oraler Gabe erfolgreich aufgenommen und im Körper verteilt wurde. „Das ist ein wesentlicher Vorteil kleiner Moleküle, denn bisher waren Lektinhemmstoffe zu groß, um oral eingenommen zu werden – diese müssten immer injiziert werden“, sagt Titz. Die Entwicklung des neuen LecB-Hemmstoffs erfolgte in enger Kooperation mit den Abteilungen „Chemische Biologie“ (HZI) und „Wirkstoffdesign und Optimierung“ (HIPS). Eine direkte klinische Anwendung ist allerdings noch nicht in Sicht, dazu sind zunächst zahlreiche weitere Studien notwendig.

Kontaktieren

Helmholtz-Zentrum für Infektionsforschung GmbH
Inhoffenstraße 7
38124 Braunschweig

Jetzt registrieren!

Die neusten Informationen direkt per Newsletter.

To prevent automated spam submissions leave this field empty.